还可以翻墙用谷歌
【新智元导读】AlphaFold3的横空出世再次震撼了整个学术界,然而谷歌DeepMind的「不开源」引起学界不满,AlphaFold服务器遭到黑客攻击,开源项目也开始发力。
取而代之的是,谷歌DeepMind推出了一个免费研究平台「AlphaFold Server」,供全球科学家使用。
但是服务有每日的次数限制,且只能用于非商业研究。同时,相比于开源的AlphaFold2来说,这种使用方式缺失了很多自由度,让一些研究人员觉得差点意思。
——这么做其实无可厚非,毕竟DeepMind也是要盈利的,它的子公司Isomorphic Labs已经开始用AlphaFold3来开发药物了。
信中指出:谷歌DeepMind的这种做法不符合科学进步的原则,科学进步依赖于社区评估、使用和建立现有工作的能力。
公开信的合著者、计算结构生物学家Roland Dunbrack,曾对AlphaFold3的论文进行了同行评审,他对DeepMind没有发布代码感到失望。
AlphaFold是一项千载难逢的突破,对生物科学产生了巨大影响。我认为它的作者最终会获得诺贝尔奖,因为他们解决了一个70多年来一直无法破解的巨大问题。我基本上每天都在工作中使用它,指导药物发现和实验上有用的HBV聚合酶的工程设计。
最新版本的AlphaFold3比以前更强大。它已经在我的实验室中揭示了HBV RNA最初如何与聚合酶结合的结构。不幸的是,他们更改了此版本的使用许可,限制了其用于药物发现。
在遭到公开信打脸的两天后,5月13日,DeepMind改头换面,宣布将在六个月内,开放AlphaFold3的代码和模型权重供学术使用。
但科学家们似乎不太买账,毕竟有了商业竞争的考量,谁知道你拿出来的是不是阉割版,而且还要等上半年之久。
Dunbrack表示,「我不认为他们会给我们做任何配体的能力,而AlQuraishi团队正在开发的OpenFold3模型就不会做这种阉割,也不会对商业用途有任何限制。」
Mohammed AlQuraishi是哥伦比亚大学的计算生物学家,他的「OpenFold」团队已经开始编写AlphaFold3的开源版本,他们希望今年完成。
AlQuraishi团队此前开发了大名鼎鼎的OpenFold,作为AlphaFold2的开源重新实现,它的效率要高得多,并且得到的结果也差不多。
科学家们追求AlphaFold3的开源版本还有其他原因,其一就是能够重新训练模型,以更好地模拟蛋白质和潜在药物之间的相互作用。
大家有兴趣还可以看看仓库中的其他项目,这位大佬已经开发了几十个AI模型的开源版本,包括著名的Dall-E 2。
此外,西雅图华盛顿大学的计算生物物理学家David Baker,也带领团队开发了名为RoseTTAFold-All-Atom的开源蛋白质和化学预测模型还可以翻墙用谷歌,尽管暂时还打不过AlphaFold3。
MIT的进化生物学家Sergey Ovchinnikov估计,像DeepMind那样训练AlphaFold3可能需要花费超过100万美元的云计算资源,尽管有可能在不影响性能的情况下偷工减料以降低成本。
Ovchinnikov说,「网上已经有一些黑客攻击,为了获得嵌入细胞膜的蛋白质(与脂肪分子相互作用)的更准确的模型。另一次服务器黑客攻击揭示了一种蛋白质采用的另一种形状。」
AlQuraishi希望,开发AlphaFold3开源版本的推动力将成为一个「警示故事」,提醒学者们依赖DeepMind等科技公司开发和分发AlphaFold等工具的危险。
有网友认为,安全问题是谷歌DeepMind选择不开源的一个重要考量,也许AlphaFold3能帮助制造针对特定人群的生物武器。
我认为令人担忧的是,有人可以用它制造超级朊病毒,或者设计一种非常有效的毒素(使用模型药物发现部分的能力)
我在科学中学到的一件事是,我们太傲慢了,认为我们可以设计一种超级疾病。现实情况是,微生物世界已经充满敌意,几乎每一种致命的生物都已经进化了。你定制设计的任何东西都可能在离开实验室的那一刻就死了。或者更有可能的是,被干掉并被吃掉。
我一直认为,如果人工智能最终能以某种方式,一步一步地指导你如何只用家居用品来制作这样的东西,那将是疯狂的。
想象一下,让一个人工智能帮你制作氯胺酮,它告诉你去买一大袋盐、果冻、3个钛螺丝、一杯橙汁、一些石膏......然后给你一个非常非常长的步骤,把它们变成氯胺酮。过程可能非常乏味,并且需要做很多工作......但是,如果这在技术上是可行的呢?
本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。