翻墙也不能访问google
通常,软件开发团队会在软件发布之前发现软件中的漏洞,让攻击者没有破坏的余地。模糊测试 (Fuzzing)是一种常见的软件测试方法,其核心思想是将自动或半自动生成的随机数据输入到一个程序中,并监视程序异常。
谷歌内部有一个名为 Project Zero 的软件安全研究团队,他们发现随着大型语言模型 (LLM) 的代码理解和一般推理能力的提高,LLM 将能够在识别和展示安全漏洞时重现人类安全研究人员的系统方法,最终弥补当前自动漏洞发现方法的一些盲点。
研究团队认为:与开放式漏洞研究相比,变体分析任务更适合当前的 LLM。通过提供一个起点(例如之前修复的漏洞的详细信息),可以消除漏洞研究中的很多歧义:「这是一个以前的错误;某个地方可能还有另一个类似的错误。」
现在,Big Sleep 智能体发现了第一个现实软件漏洞:SQLite 中可利用堆栈缓冲区下溢。
研究团队收集了 SQLite 存储库中最近的一些提交,手动删除了琐碎的和仅用于文档的更改,然后调整了 prompt,为智能体提供提交消息(commit message)和更改的差异,要求智能体检查当前存储库是否存在可能尚未修复的相关问题。
这创建了一个潜在的边缘情况,而函数 seriesBestIndex 无法正确处理这种边缘情况,导致在处理对 rowid 列有约束的查询时,将负索引写入堆栈缓冲区。在研究团队提供给智能体的构建中,启用了调试断言(debug assertion),并且此条件由第 706 行的断言检查:
然而,实际上这个断言并不存在,因此该漏洞可能会被恶意利用。幸运的是,该团队在正式版本出现之前就发现了这个问题,因此 SQLite 用户没有受到影响。
毫无疑问的是,智能体在这次漏洞查找中起了关键作用,这也表明智能体在软件安全方面具备很大的应用潜力。
本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台翻墙也不能访问google。申请澎湃号请用电脑访问。